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Spoken word recognition requires complex, invariant representa-
tions. Using a meta-analytic approach incorporating more than 100
functional imaging experiments, we show that preference for
complex sounds emerges in the human auditory ventral stream in
a hierarchical fashion, consistent with nonhuman primate electro-
physiology. Examining speech sounds, we show that activation
associated with the processing of short-timescale patterns (i.e.,
phonemes) is consistently localized to left mid-superior temporal
gyrus (STG), whereas activation associated with the integration of
phonemes into temporally complex patterns (i.e., words) is con-
sistently localized to left anterior STG. Further, we show left mid-
to anterior STG is reliably implicated in the invariant representation
of phonetic forms and that this area also responds preferentially to
phonetic sounds, above artificial control sounds or environmental
sounds. Together, this shows increasing encoding specificity and
invariance along the auditory ventral stream for temporally
complex speech sounds.

functional MRI | meta-analysis | auditory cortex | object recognition |
language

Spoken word recognition presents several challenges to the
brain. Two key challenges are the assembly of complex au-

ditory representations and the variability of natural speech (SI
Appendix, Fig. S1) (1). Representation at the level of primary
auditory cortex is precise: fine-grained in scale and local in
spectrotemporal space (2, 3). The recognition of complex spec-
trotemporal forms, like words, in higher areas of auditory cortex
requires the transformation of this granular representation
into Gestalt-like, object-centered representations. In brief, local
features must be bound together to form representations of
complex spectrotemporal contours, which are themselves the
constituents of auditory “objects” or complex sound patterns (4,
5). Next, representations must be generalized and abstracted.
Coding in primary auditory cortex is sensitive even to minor
physical transformations. Object-centered coding in higher areas,
however, must be invariant (i.e., tolerant of natural stimulus
variation) (6). For example, whereas the phonemic structure of a
word is fixed, there is considerable variation in physical, spec-
trotemporal form—attributable to accent, pronunciation, body
size, and the like—among utterances of a given word. It has been
proposed for visual cortical processing that a feed-forward, hi-
erarchical architecture (7) may be capable of simultaneously
solving the problems of complexity and variability (8–12). Here,
we examine these ideas in the context of auditory cortex.
In a hierarchical pattern-recognition scheme (8), coding in the

earliest cortical field would reflect the tuning and organization of
primary auditory cortex (or core) (2, 3, 13). That is, single-neu-
ron receptive fields (more precisely, frequency-response areas)
would be tuned to particular center frequencies and would have
minimal spectrotemporal complexity (i.e., a single excitatory
zone and one-to-two inhibitory side bands). Units in higher fields
would be increasingly pattern selective and invariant to natural
variation. Pattern selectivity and invariance respectively arise
from neural computations similar in effect to “logical-AND” and
“logical-OR” gates. In the auditory system, neurons whose tun-
ing is combination sensitive (14–21) perform the logical-AND

gate–like operation, conjoining structurally simple representa-
tions in lower-order units into the increasingly complex repre-
sentations (i.e., multiple excitatory and inhibitory zones) of
higher-order units. In the case of speech sounds, these neurons
conjoin representations for adjacent speech formants or, at
higher levels, adjacent phonemes. Although the mechanism by
which combination sensitivity (CS) is directionally selective in
the temporal domain is not fully understood, some propositions
exist (22–26). As an empirical matter, direction selectivity is
clearly present early in auditory cortex (19, 27). It is also ob-
served to operate at time scales (50–250 ms) sufficient for pho-
neme concatenation, as long as 250 ms in the zebra finch (15)
and 100 to 150 ms in macaque lateral belt (18). Logical-
OR gate–like computation, technically proposed to be a soft
maximum operation (28–30), is posited to be performed by
spectrotemporal-pooling units. These units respond to supra-
threshold stimulation from any member of their connected
lower-order pool, thus creating a superposition of the connected
lower-order representations and abstracting them. With respect
to speech, this might involve the pooling of numerous, rigidly
tuned representations of different exemplars of a given phoneme
into an abstracted representation of the entire pool. Spatial
pooling is well documented in visual cortex (7, 31, 32) and there
is some evidence for its analog, spectrotemporal pooling, in
auditory cortex (33–35), including the observation of complex
cells when A1 is developmentally reprogrammed as a surrogate
V1 (36). However, a formal equivalence is yet to be demon-
strated (37, 38).
Auditory cortex’s predominant processing pathways, ventral

and dorsal (39, 40), appear to be optimized for pattern recog-
nition and action planning, respectively (17, 18, 40–44). Speech-
specific models generally concur (45–48), creating a wide con-
sensus that word recognition is performed in the auditory ventral
stream (refs. 42, 45, 47–50, but see refs. 51–53). The hierarchical
model predicts an increase in neural receptive field size and
complexity along the ventral stream. With respect to speech,
there is a discontinuity in the processing demands associated
with the recognition of elemental phonetic units (i.e., phonemes
or something phone-like) and concatenated units (i.e., multi-
segmental forms, both sublexical forms and word forms). Pho-
neme recognition requires sensitivity to the arrangement of
constellations of spectrotemporal features (i.e., the presence and
absence of energy at particular center frequencies and with
particular temporal offsets). Word-form recognition requires
sensitivity to the temporal arrangement of phonemes. Thus,
phoneme recognition requires spectrotemporal CS and operates
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on low-level acoustic features (SI Appendix, Fig. S1B, second
layer), whereas word-form recognition requires only temporal
CS (i.e., concatenation of phonemes) and operates on higher-
order features that may also be perceptual objects in their own
right (SI Appendix, Fig. S1B, top layer). If word-form recognition
is implemented hierarchically, we might expect this discontinuity
in processing to be mirrored in cortical organization, with con-
catenative phonetic recognition occurring distal to elemental
phonetic recognition.
Primate electrophysiology identifies CS as occurring as early as

core’s supragranular layers and in lateral belt (16, 17, 19, 37). In
the macaque, selectivity for communication calls—similar in
spectrotemporal structure to phonemes or consonant-vowel
(CV) syllables—is observed in belt area AL (54) and, to an even
greater degree, in a more anterior field, RTp (55). Further, for
macaques trained to discriminate human phonemes, categorical
coding is present in the single-unit activity of AL neurons as well
as in the population activity of area AL (1, 56). Human homologs
to these sites putatively lie on or about the anterior-lateral aspect
of Heschl’s gyrus and in the area immediately posterior to it (13,
57–59). Macaque PET imaging suggests there is also an evolu-
tionary predisposition to left-hemisphere processing for con-
specific communication calls (60). Consistent with macaque
electrophysiology, human electrocorticography recordings from
superior temporal gyrus (STG), in the region immediately pos-
terior to the anterior-lateral aspect of Heschl’s gyrus (i.e., mid-
STG), show the site to code for phoneme identity at the pop-
ulation level (61). Mid-STG is also the site of peak high-gamma
activity in response to CV sounds (62–64). Similarly, human
functional imaging studies suggest left mid-STG is involved in
processing elemental speech sounds. For instance, in subtractive
functional MRI (fMRI) comparisons, after partialing out vari-
ance attributable to acoustic factors, Leaver and Rauschecker
(2010) showed selectivity in left mid-STG for CV speech sounds
as opposed to other natural sounds (5). This implies the presence
of a local density of neurons with receptive-field tuning opti-
mized for the recognition of elemental phonetic sounds [i.e.,
areal specialization (AS)]. Furthermore, the region exhibits
fMRI-adaptation phenomena consistent with invariant repre-
sentation (IR) (65, 66). That is, response diminishes when the
same phonetic content is repeatedly presented even though a
physical attribute of the stimulus, one unrelated to phonetic
content, is changed; here, the speaker’s voice (5). Similarly, using
speech sound stimuli on the /ga/ — /da/ continuum and com-
paring response to exemplar pairs that varied only in acoustics or
which varied both in acoustics and in phonetic content, Joanisse
and colleagues (2007) found adaptation specific to phonetic
content in left mid-STG, again implying IR (67).
The site downstream of mid-STG, performing phonetic con-

catenation, should possess neurons that respond to late com-
ponents of multisegmental sounds (i.e., latencies >60 ms). These
units should also be selective for specific phoneme orderings.
Nonhuman primate data for regions rostral to A1 confirm that
latencies increase rostrally along the ventral stream (34, 55, 68,
69), with the median latency to peak response approaching
100 ms in area RT (34), consistent with the latencies required for
phonetic concatenation. In a rare human electrophysiology study,
Creutzfeldt and colleagues (1989) report vigorous single-unit
responses to words and sentences in mid- to anterior STG (70).
This included both feature-tuned units and late-component-
tuned units. Although the relative location of feature and late-
component units is not reported, and the late component units
do not clearly evince temporal CS, the mixture of response types
supports the supposition of temporal combination-sensitive units
in human STG. Imaging studies localize processing of multi-
segmental forms to anterior STG/superior temporal sulcus (STS).
This can be seen in peak activation to word-forms in electro-
corticography (71) and magnetoencephalography (72). FMRI in-

vestigations of stimulus complexity, comparing activation to word-
form and pure-tone stimuli, report similar localization (47, 73, 74).
Invariant tuning for word forms, as inferred from fMRI-adapta-
tion studies, also localizes to anterior STG/STS (75–77). Studies
investigating cross-modal repetition effects for auditory and visual
stimuli confirm anterior STG/STS localization and, further, show
it to be part of unimodal auditory cortex (78, 79). Finally, appli-
cation of electrical cortical interference to anterior STG disrupts
auditory comprehension, producing patient reports of speech as
being like “a series of meaningless utterances” (80).
Here, we use a coordinate-based meta-analytic approach [ac-

tivation likelihood estimation (ALE)] (81) to make an unbiased
assessment of the robustness of functional-imaging evidence for
the aforementioned speech-recognition model. In short, the
method assesses the stereotaxic concordance of reported effects.
First, we investigate the strength of evidence for the predicted
anatomical dissociation between elemental phonetic recognition
(mid-STG) and concatenative phonetic recognition (anterior
STG). To assess this, two functional imaging paradigms are
meta-analyzed: speech vs. acoustic-control sounds (a proxy for
CS, as detailed later) and repetition suppression (RS). For each
paradigm, separate analyses are performed for studies of ele-
mental phonetic processing (i.e., phoneme- and CV-length
stimuli) and for studies involving concatenative phonetic pro-
cessing (i.e., word-length stimuli). Although the aforementioned
model is principally concerned with word-from recognition, for
comparative purposes, we meta-analyze studies of phrase-length
stimuli as well. Second, we investigate the strength of evidence
for the predicted ventral-stream colocalization of CS and IR
phenomena. To assess this, the same paradigms are reanalyzed
with two modifications: (i) For IR, a subset of RS studies
meeting heightened criteria for fMRI-adaptation designs is in-
cluded (Methods); (ii) to attain sufficient sample size, analyses
are collapsed across stimulus lengths.
We also investigate the strength of evidence for AS, which has

been suggested as an organizing principle in higher-order areas
of the auditory ventral stream (5, 82–85) and is a well established
organizing principle in the visual system’s analogous pattern
recognition pathway (86–89). In the interest of comparing the
organizational properties of the auditory ventral stream with
those of the visual ventral stream, we assess the colocalization of
AS phenomena with CS and IR phenomena. CS and IR are
examined as described earlier. AS is examined by meta-analysis
of speech vs. nonspeech natural-sound paradigms.
At a deep level, both our AS and CS analyses putatively examine

CS-dependent tuning for complex patterns of spectrotemporal
energy. Acoustic-control sounds lack the spectrotemporal fea-
ture combinations requisite for driving combination-sensitive
neurons tuned to speech sounds. For nonspeech natural sounds,
the same is true, but there should also exist combination-sensi-
tive neurons tuned to these stimuli, as they have been repeatedly
encountered over development. For an effect to be observed in
the AS analyses, not only must there be a population of com-
bination-sensitive speech-tuned neurons, but these neurons must
also cluster together such that a differential response is observ-
able at the macroscopic scale of fMRI and PET.

Results
Phonetic-length-based analyses of CS studies (i.e., speech sounds
vs. acoustic control sounds) were performed twice. In the first
analyses, tonal control stimuli were excluded on grounds that
they do not sufficiently match the spectrotemporal energy dis-
tribution of speech. That is, for a strict test of CS, we required
acoustic control stimuli to model low-level properties of speech
(i.e., contain spectrotemporal features coarsely similar to
speech), not merely to drive primary and secondary auditory
cortex. Under this preparation, spatial concordance was greatest
in STG/STS across each phonetic length-based analysis (Table 1).
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Within STG/STS, results were left-biased across peak ALE-sta-
tistic value, cluster volume, and the percentage of studies
reporting foci within a given cluster, hereafter “cluster concor-
dance.” The predicted differential localization for phoneme- and
word-length processing was confirmed, with phoneme-length
effects most strongly associated with left mid-STG and word-

length effects with left anterior STG (Fig. 1 and SI Appendix, Fig.
S2). Phrase-length studies showed a similar leftward processing
bias. Further, peak processing for phrase-length stimuli localized
to a site anterior and subjacent to that of word-length stimuli,
suggesting a processing gradient for phonetic stimuli that pro-
gresses from mid-STG to anterior STG and then into STS.

Table 1. Results for phonetic length-based analyses

Analysis/anatomy BA Cluster Concordance Volume, mm3

Center of mass Peak coordinates

Peak ALEx y z x y z

CS
Phoneme length

Left STG 42/22 0.93 3,624 −57 −25 1 −58 −20 2 0.028
Right STG/RT 42/22 0.21 512 56 −11 −2 54 −2 2 0.015

Word length
Left STG 42/22 0.56 2,728 −57 −17 −1 −56 −16 −2 0.021
Right STG 22 0.13 192 55 −17 0 56 −16 0 0.014

Phrase length
Left STS 21 0.58 2,992 −56 −8 −8 −56 −8 −8 0.038
Left STS 21 0.42 1,456 −52 7 −16 −52 8 −16 0.035
Right STS 21 0.32 2,264 54 −3 −9 56 −6 −6 0.032
Left STS 22 0.32 840 −54 −35 1 −54 −34 0 0.028
Left PreCG 6 0.32 664 −47 −7 47 −48 −8 48 0.025
Left IFG 47 0.21 456 −42 25 −12 −42 24 −12 0.021
Left IFG 44 0.16 200 −48 11 20 −48 10 20 0.020

RS
Phoneme length

Left STG 42/22 0.33 640 −58 −21 4 −58 −20 4 0.018
Word length

Left STG 42/22 0.50 1408 −56 −9 −3 −56 −10 −4 0.027
Left STG 42/22 0.19 288 −58 −28 2 −58 −28 2 0.017

BA, Brodmann area; IFG, inferior frontal gyrus; PreCG, precentral gyrus; RT, rostrotemporal area.

Fig. 1. Foci meeting inclusion criteria for length-based CS analyses (A–C) and ALE-statistic maps for regions of significant concordance (D–F) (p < 10−3, k >
150 cm3). Analyses show leftward bias and an anterior progression in peak effects with phoneme-length studies showing greatest concordance in left mid-STG
(A and D; n = 14), word-length studies showing greatest concordance in left anterior STG (B and E; n = 16), and phrase-length analyses showing greatest
concordance in left anterior STS (C and F; n = 19). Sample size is given with respect to the number of contrasts from independent experiments contributing to
an analysis.
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Although individual studies report foci for left frontal cortex
in each of the length-based cohorts, only in the phrase-length
analysis do focus densities reach statistical significance.
Second, to increase sample size and enable lexical status-based

subanalyses, we included studies that used tonal control stimuli.
Under this preparation the same overall pattern of results was
observed with one exception: the addition of a pair of clusters in
left ventral prefrontal cortex for the word-length analysis (SI
Appendix, Fig. S3 and Table S1). Next, we further subdivided
word-length studies according to lexical status: real word or
pseudoword. A divergent pattern of concordance was observed
in left STG (Fig. 2 and SI Appendix, Fig. S4 and Table S1). Peak
processing for real-word stimuli robustly localized to anterior
STG. For pseudoword stimuli, a bimodal distribution was ob-
served, peaking both in mid- and anterior STG and coextensive
with the real-word cluster.
Third, to assess the robustness of the predicted STG stimulus-

length processing gradient, length-based analyses were per-
formed on foci from RS studies. For both phoneme- and word-
length stimuli, concordant foci were observed to be strictly left-
lateralized and exclusively within STG (Table 1). The predicted
processing gradient was also observed. Peak concordance for
phoneme-length stimuli was seen in mid-STG, whereas peak
concordance for word-length stimuli was seen in anterior STG
(Fig. 3 and SI Appendix, Fig. S5). For the word-length analysis,
a secondary cluster was observed in mid-STG. This may reflect
repetition effects concurrently observed for phoneme-level rep-
resentation or, as the site is somewhat inferior to that of pho-
neme-length effects, it may be tentative evidence of a secondary
processing pathway within the ventral stream (63, 90).
Fourth, to assess colocalization of CS, IR, and AS, we per-

formed length-pooled analyses (Fig. 4, Table 2, and SI Appendix,
Fig. S6). Robust CS effects were observed in STG/STS. Again,
they were left-biased across peak ALE-statistic value, cluster
volume, and cluster concordance. Significant concordance was
also found in left frontal cortex. A single result was observed in
the IR analysis, localizing to left mid- to anterior STG. This
cluster was entirely coextensive with the primary left-STG CS
cluster. Finally, analysis of AS foci found concordance in STG/
STS. It was also left-biased in peak ALE-statistic value, cluster
volume, and cluster concordance. Further, a left-lateralized
ventral prefrontal result was observed. The principal left STG/
STS cluster was coextensive with the region of overlap between
the CS and IR analyses. Within superior temporal cortex, the AS

analysis was also generally coextensive with the CS analysis. In
left ventral prefrontal cortex, the AS and CS results were not
coextensive but were nonetheless similarly localized. Fig. 5 shows
exact regions of overlap across length-based and pooled analyses.

Discussion
Meta-analysis of speech processing shows a left-hemisphere op-
timization for speech and an anterior-directed processing gra-
dient. Two unique findings are presented. First, dissociation is
observed for the processing of phonemes, words, and phrases:
elemental phonetic processing is most strongly associated with
mid-STG; auditory word-form processing is most strongly asso-
ciated with anterior STG, and phrasal processing is most strongly
associated with anterior STS. Second, evidence for CS, IR, and
AS colocalize in mid- to anterior STG. Each finding supports the
presence of an anterior-directed ventral-stream pattern-recog-
nition pathway. This is in agreement with Leaver and Rau-
schecker (2010), who tested colocalization of AS and IR in
a single sample using phoneme-length stimuli (5). Recent meta-
analyses that considered related themes affirm aspects of the
present work. In a study that collapsed across phoneme and
pseudoword processing, Turkeltaub and Coslett (2010) localized
sublexical processing to mid-STG (91). This is consistent with
our more specific localization of elemental phonetic processing.
Samson and colleagues (2011), examining preferential tuning for
speech over music, report peak concordance in left anterior
STG/STS (92), consistent with our more general areal-speciali-
zation analysis. Finally, our results support Binder and col-
leagues’ (2000) anterior-directed, hierarchical account of word
recognition (47) and Cohen and colleagues’ (2004) hypothesis of
an auditory word-form area in left anterior STG (78).
Classically, auditory word-form recognition was thought to

localize to posterior STG/STS (93). This perspective may have
been biased by the spatial distribution of middle cerebral artery
accidents. The artery’s diameter decreases along the Sylvian
fissure, possibly increasing the prevalence of posterior infarcts.
Current methods in aphasia research are better controlled and
more precise. They implicate mid- and anterior temporal regions
in speech comprehension, including anterior STG (94, 95). Al-
though evidence for an anterior STG/STS localization of audi-
tory word-form processing has been present in the functional
imaging literature since inception (96–99), perspectives advanc-
ing this view have been controversial and the localization is still
not uniformly accepted. We find strong agreement among word-

Fig. 2. Foci meeting liberal inclusion criteria for lexically based word-length CS analyses (A and B) and ALE-statistic maps for regions of significant con-
cordance (C and D) (p < 10−3, k > 150 cm3). Similar to the CS analyses in Fig. 1, a leftward bias and an anterior progression in peak effects are shown.
Pseudoword studies show greatest concordance in left mid- to anterior STG (A and C; n = 13). Notably, the distribution of concordance effects is bimodal,
peaking both in mid- (−60, −26, 6) and anterior (−56, −10, 2) STG. Real-word studies show greatest concordance in left anterior STG (B and D; n = 22).
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processing experiments, both within and across paradigms, each
supporting relocation of auditory word-form recognition to an-
terior STG. Through consideration of phoneme- and phrasal-
processing experiments, we show the identified anterior-STG
word form-recognition site to be situated between sites robustly
associated with phoneme and phrase processing. This comports
with hierarchical processing and thereby further supports ante-
rior-STG localization for auditory word-form recognition.
It is important to note that some authors define “posterior”

STG to be posterior of the anterior-lateral aspect of Heschl’s
gyrus or of the central sulcus. These definitions include the re-
gion we discuss as “mid-STG,” the area lateral of Heschl’s gyrus.
We differentiate mid- from posterior STG on the basis of
proximity to primary auditory cortex and the putative course of

the ventral stream. As human core auditory fields lie along or
about Heschl’s gyrus (13, 57–59, 100), the ventral streams’ course
can be inferred to traverse portions of planum temporale. Spe-
cifically, the ventral stream is associated with macaque areas
RTp and AL (54–56), which lie anterior to and lateral of A1
(13). As human A1 lies on or about the medial aspect of Heschl’s
gyrus, with core running along its extent (57, 100), a processing
cascade emanating from core areas, progressing both laterally,
away from core itself, and anteriorly, away from A1, will neces-
sarily traverse the anterior-lateral portion of planum temporale.
Further, this implies mid-STG is the initial STG waypoint of the
ventral stream.
Nominal issues aside, support for a posterior localization

could be attributed to a constellation of effects pertaining to

Fig. 3. Foci meeting inclusion criteria for length-based RS analyses (A and B) and ALE-statistic maps for regions of significant concordance (C and D) (p < 10−3,
k > 150 cm3). Analyses show left lateralization and an anterior progression in peak effects with phoneme-length studies showing greatest concordance in left
mid-STG (A and C; n = 12) and word-length studies showing greatest concordance in left anterior STG (B and D; n = 16). Too few studies exist for phrase-length
analyses (n = 4).

Fig. 4. Foci meeting inclusion criteria for length-pooled analyses (A–C) and ALE-statistic maps for regions of significant concordance (D–F) (p < 10−3, k > 150
cm3). Analyses show leftward bias in the CS (A and D; n = 49) and AS (C and F; n = 15) analyses and left lateralization in the IR (B and E; n = 11) analysis. Foci are
color coded by stimulus length: phoneme length, red; word length, green; and phrase length, blue.
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aspects of speech or phonology that localize to posterior STG/
STS (69), for instance: speech production (101–108), phono-
logical/articulatory working memory (109, 110), reading (111–
113) [putatively attributable to orthography-to-phonology trans-
lation (114–116)], and aspects of audiovisual language processing
(117–122). Although these findings relate to aspects of speech

and phonology, they do so in terms of multisensory processing
and sensorimotor integration and are not the key paradigms
indicated by computational theory for demonstrating the pres-
ence of pattern recognition networks (8–12, 123). Those para-
digms (CS and adaptation), systematically meta-analyzed here,
find anterior localization.

Table 2. Results for aggregate analyses

Analysis/anatomy BA Cluster Concordance Volume, mm3

Center of Mass Peak Coordinates

Peak ALEx y z x y z

CS
Left STG 42/22 0.82 11,944 −57 −19 −1 −58 −18 0 0.056
Right STG 42/22 0.47 6,624 55 −10 −3 56 −6 −6 0.045
Left STS 21 0.18 1,608 −51 8 −14 −50 8 −14 0.039
Left PreCG 6 0.12 736 −47 −7 48 −48 −8 48 0.031
Left IFG 44 0.10 744 −45 12 21 −46 12 20 0.025
Left IFG 47 0.08 240 −42 25 −12 −42 24 −12 0.022
Left IFG 45 0.04 200 −50 21 12 −50 22 12 0.020
IR*

Left STG 22/21 0.45 1,200 −58 −16 −1 −56 −14 −2 0.020
AS
Left STG 42/22 0.87 3,976 −58 −22 2 −58 −24 2 0.031
Right STG 42/22 0.53 2,032 51 −23 2 54 −16 0 0.026
Left IFG 47/45 0.13 368 −45 17 3 −44 18 2 0.018

*Broader inclusion criteria for the IR analysis (SI Appendix, Table S3) yield equivalent results with the following qualifications: cluster volume 1,008 mm3 and
cluster concordance 0.33.

Fig. 5. Flat-map presentation of ALE cluster overlap for (A) the CS analyses shown in Fig. 1, (B) the word-length lexical status analyses shown in Fig. 2, (C) the
RS analyses shown in Fig. 3, and (D) the length-pooled analyses shown in Fig. 4. For orientation, prominent landmarks are shown on the left hemisphere of A,
including the circular sulcus (CirS), central sulcus (CS), STG, and STS.
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The segregation of phoneme and word-form processing along
STG implies a growing encoding specificity for complex phonetic
forms by higher-order ventral-stream areas. More specifically, it
suggests the presence of a hierarchical network performing pho-
netic concatenation at a site anatomically distinct from and
downstream of the site performing elemental phonetic recogni-
tion. Alternatively, the phonetic-length effect could be attributed
to semantic confound: semantic content increases from phonemes
to word forms. In an elegant experiment, Thierry and colleagues
(2003) report evidence against this (82). After controlling for
acoustics, they show that left anterior STG responds more to
speech than to semantically matched environmental sounds.
Similarly, Belin and colleagues (2000, 2002), after controlling for
acoustics, show that left anterior STG is not merely responding to
the vocal quality of phonetic sounds; rather, it responds prefer-
entially to the phonetic quality of vocal sounds (83, 84).
Additional comment on the localization and laterality of au-

ditory word and pseudoword processing, as well as on processing
gradients in STG/STS, is provided in SI Appendix, Discussion.
The auditory ventral stream is proposed to use CS to conjoin

lower-order representations and thereby to synthesize complex
representations. As the tuning of higher-order combination-
sensitive units is contingent upon sensory experience (124, 125),
phrases and sentences would not generally be processed as Ge-
stalt-like objects. Although we have analyzed studies involving
phrase- and sentence-level processing, their inclusion is for
context and because word-form recognition is a constituent part
of sentence processing. In some instances, however, phrases are
processed as objects (126). This status is occasionally recognized
in orthography (e.g., “nonetheless”). Such phrases ought to be
recognized by the ventral-stream network. This, however, would
be the exception, not the rule. Hypothetically, the opposite may
also occur: a word form’s length might exceed the network’s
integrative capacity (e.g., “antidisestablishmentarianism”). We
speculate the network is capable of concatenating sequences of
at least five to eight phonemes: five to six phonemes is the modal
length of English word forms and seven- to eight-phoneme-long
word forms comprise nearly one fourth of English words (SI
Appendix, Fig. S7 and Discussion). This estimate is also consis-
tent with the time constant of echoic memory (∼2 s). (Notably,
there is a similar issue concerning the processing of text in the
visual system’s ventral stream, where, for longer words, fovea-
width representations must be “temporally” conjoined across
microsaccades.) Although some phrases may be recognized in
the word-form recognition network, the majority of STS activa-
tion associated with phrase-length stimuli (Fig. 1F) is likely re-
lated to aspects of syntax and semantics. This observation
enables us to subdivide the intelligibility network, broadly de-
fined by Scott and colleagues (2000) (127). The first two stages
involve elemental and concatenative phonetic recognition, ex-
tending from mid-STG to anterior STG and, possibly, into sub-
jacent STS. Higher-order syntactic and semantic processing is
conducted throughout STS and continues into prefrontal cortex
(128–133).
A qualification to the propositions advanced here for word-

form recognition is that this account pertains to perceptually
fluent speech recognition (e.g., native language conversational
discourse). Both left ventral and dorsal networks likely mediate
nonfluent speech recognition (e.g., when processing neologisms
or recently acquired words in a second language). Whereas
ventral networks are implicated in pattern recognition, dorsal
networks are implicated in forward- and inverse-model compu-
tation (42, 44), including sensorimotor integration (42, 45, 48,
134). This supports a role for left dorsal networks in mapping
auditory representations onto the somatomotor frame of refer-
ence (135–139), yielding articulator-encoded speech. This ven-
tral–dorsal dissociation is illustrated in an experiment by
Buchsbaum and colleagues (2005) (110). Using a verbal working

memory task, they demonstrated the time course of left anterior
STG/STS activation to be consistent with strictly auditory
encoding: activation was locked to auditory stimulation and it
was not sustained throughout the late phase of item rehearsal. In
contrast, they observed the activation time course in the dorsal
stream to be modality independent and to coincide with late-
phase rehearsal (i.e., it was associated with verbal rehearsal in-
dependent of input modality, auditory or visual). Importantly,
late-phase rehearsal can be demonstrated behaviorally, by ar-
ticulatory suppression, to be mediated by subvocalization (i.e.,
articulatory rehearsal in the phonological loop) (140).
There are some notable differences between auditory and vi-

sual word recognition. Spoken language was intensely selected
for during evolution (141), whereas reading is a recent cultural
innovation (111). The age of acquisition of phoneme represen-
tation is in the first year of life (124), whereas it is typically in the
third year for letters. A similar developmental lag is present with
respect to acquisition of the visual lexicon. Differences aside,
word recognition in each modality requires similar processing,
including the concatenation of elemental forms, phonemes or
letters, into sublexical forms and word forms. If the analogy
between auditory and visual ventral streams is correct, our
results predict a similar anatomical dissociation for elemental
and concatenative representation in the visual ventral stream.
This prediction is also made by models of text processing (10).
Although we are aware of no study that has investigated letter
and word recognition in a single sample, support for the disso-
ciation is present in the literature. The visual word-form area,
the putative site of visual word-form recognition (142), is located
in the left fusiform gyrus of inferior temporal cortex (IT) (143).
Consistent with expectation, the average site of peak activation
to single letters in IT (144–150) is more proximal to V1, by ap-
proximately 13 mm. A similar anatomical dissociation can be
seen in paradigms probing IR. Ordinarily, nonhuman primate IT
neurons exhibit a degree of mirror-symmetric invariant tuning
(151). Letter recognition, however, requires nonmirror IR (e.g.,
to distinguish “b” from “d”). When assessing identity-specific RS
(i.e., repetition effects specific to non–mirror-inverted repeti-
tions), letter and word effects differentially localize: effects for
word stimuli localize to the visual word-form area (152), whereas
effects for single-letter stimuli localize to the lateral occipital
complex (153), a site closer to V1. Thus, the anatomical disso-
ciation observed in auditory cortex for phonemes and words
appears to reflect a general hierarchical processing architecture
also present in other sensory cortices.
In conclusion, our analyses show the human functional imag-

ing literature to support a hierarchical model of object recog-
nition in auditory cortex, consistent with nonhuman primate
electrophysiology. Specifically, our results support a left-biased,
two-stage model of auditory word-form recognition with analysis
of phonemes occurring in mid-STG and word recognition oc-
curring in anterior STG. A third stage extends the model to
phrase-level processing in STS. Mechanistically, left mid- to
anterior STG exhibits core qualities of a pattern recognition
network, including CS, IR, and AS.

Methods
To identify prospective studies for inclusion, a systematic search of the
PubMed database was performed for variations of the query, “(phonetics OR
‘speech sounds’ OR phoneme OR ‘auditory word’) AND (MRI OR fMRI OR
PET).” This yielded more than 550 records (as of February 2011). These
studies were screened for compliance with formal inclusion criteria: (i) the
publication of stereotaxic coordinates for group-wise fMRI or PET results in
a peer-reviewed journal and (ii) report of a contrast of interest (as detailed
later). Exclusion criteria were the use of pediatric or clinical samples. In-
clusion/exclusion criteria admitted 115 studies. For studies reporting multiple
suitable contrasts per sample, to avoid sampling bias, a single contrast was
selected. For CS analyses, contrasts of interest compared activation to speech
stimuli (i.e., phonemes/syllables, words/pseudowords, and phrases/sentences/
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pseudoword sentences) with activation to matched, nonnaturalistic acoustic
control stimuli (i.e., various tonal, noise, and complex artificial nonspeech
stimuli). A total of 84 eligible contrasts were identified, representing 1,211
subjects and 541 foci. For RS analyses, contrasts compared activation to re-
peated and nonrepeated speech stimuli. A total of 31 eligible contrasts were
identified, representing 471 subjects and 145 foci. For IR analyses, a subset of
the RS cohort was selected that used designs in which “repeated” stimuli
also varied acoustically but not phonetically (e.g., two different utterances
of the same word). The RS cohort was used for phonetic length-based
analyses as the more restrictive criteria for IR yielded insufficient sample
sizes (as detailed later). For AS analyses, contrasts compared activation to
speech stimuli and to other naturalistic stimuli (e.g., animal calls, music, tool
sounds). A total of 17 eligible contrasts were identified, representing 239
subjects and 100 foci. All retained contrasts were binned for phonetic
length-based analyses according to the estimated mean number of pho-
nemes in their stimuli: (i) “phoneme length,” one or two phonemes, (ii)
“word length,” three to 10 phonemes, and (iii) “phrase length,” more than
10 phonemes. SI Appendix, Tables S2–S4, identify the contrasts included in
each analysis.

Theminimum sample size formeta-analyseswas 10 independent contrasts.
Foci reported in Montreal Neurological Institute coordinates were trans-
formed into Talairach coordinates according to the ICBM2TAL transformation

(154). Foci concordance was assessed by the method of ALE (81) in a random-
effects implementation (155) that controls for within-experiment effects
(156). Under ALE, foci are treated as Gaussian probability distributions,
which reflect localization uncertainty. Pooled Gaussian focus maps were
tested against a null distribution reflecting a random spatial association
between different experiments. Correction for multiple comparisons was
obtained through estimation of false discovery rate (157). Two significance
criteria were used: minimum p value was set at 10−3 and minimum cluster
extent was set at 150 mm3. Analyses were conducted in GINGERALE (Re-
search Imaging Institute), AFNI (National Institute of Mental Health), and
MATLAB (Mathworks). For visualization, CARET (Washington University in
St. Louis) was used to project foci and ALE clusters from volumetric space
onto the cortical surface of the Population-Average, Landmark- and Surface-
based atlas (158). Readers should note that this procedure can introduce
slight localization artifacts (e.g., projection may distribute one volumetric
cluster discontinuously over two adjacent gyri).
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